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Abstract. We apply an optimized method to the adjoint generation oha+tévolving land ice model
through algorithmic differentiation (AD). The optimizati involves a special treatment of the fixed-
point iteration required to solve the nonlinear stressrmawhich differs from a straightforward
application of AD software, and leads to smaller memory i@guoents and in some cases shorter
computation times of the adjoint. The optimization is doreimplementation of the algorithm of
Christianson [1994] for reverse accumulation of fixed-piroblems, with the AD tool OpenAD.
For test problems, the optimized adjoint is shown to havddiaer memory requirements, poten-
tially enabling larger problem sizes on memory-limited imaes. In the case of the land ice model,
implementation of the algorithm allows further optimizatiby having the adjoint model solve a
sequence of linear systems with identical (as opposed onggrmatrices, greatly improving per-
formance. The methods introduced here will be of value temw#iforts applying AD tools to ice
models, particularly ones which solve a “hybrid” shallove icshallow shelf approximation to the

Stokes equations.

1 Introduction

In recent decades it has become clear how little we undetstbaut the processes governing ice
sheet behavioiMaughan and Arthern2007), and the complexity that is required in numerical ice
sheet models in order to understand this behauidtlé et all, [2007;/Lipscomb et &/.2009). The
representation of poorly-understood processes in ice shadels leads to large, poorly-constrained
parameter sets, the size of which might potentially scaté e size of the numerical grid. It is
vital that there be a means to relate the outputs of an icd efegel back to these parameters, both
comprehensively and efficiently. However, the simplesthoétof sensitivity assessment — running
the model multiple times while varying each parameter itaison — quickly becomes intractable

because of the complexity of the models. Consider, for ne®#aa dynamic model of the Antarctic
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Ice Sheet, which takes several days to run on a supercorgpultister, and contains several hundred
thousand parameters pertaining to the spatially varyimgidnal and geothermal properties of the
bed over which it slides. Assessing the sensitivity of theleldo this parameter field by the method
described above would not be feasible.

Adjoint modelgrovide a means to assess these sensitivities in a way whiontépendent of the
number of parameters. The adjoint of an ice sheet model &mebusly calculates the derivatives of
a single model output (often calleccast functiof with respect to all model parameters — or rather,
thegradientof the cost function with respect to the parameter satpatrol variables Note that the

latter computation more naturally lends itself to scieatifiquiry, as

— this single output can be one of societal interest, for imstathe contribution of an ice sheet
to sea level over a given time window; and

— an investigator is unlikely to solely be interested in jusemf these (potentially) several
hundred thousand poorly-constrained parameters.

The adjoint model is essentially the linearization of thedelponly the information is propagated
backward in time (or rather in reverse to computational Qrdis such, the original model is often
referred to as théorward model Essentially, it is this backward-in-time propagationtthdows for
simultaneous calculation of these derivatives, regasddéthe dimension of the parameter set.
One of the earliest instances of the use of the adjoint of arsieet flow model was that of
MacAyeal(1992), in which a control method was developed to optimédla model to observed
velocities through adjustment of bed friction paramet&he ice flow model used in this study was
a depth-integrated approximation to the shear-thinnimdest equations, appropriate to ice shelves
and weak-bedded streanMdcAyeall1989). Moreover, it was a “static” model, i.e. it consistedy
of the nonlinear stress balance governing ice velocitied,did not evolve the ice geometry or tem-
perature. The method has since been used in a number of appik (e.g.MacAveal et al.[1995;
Rommelaergl997 Vieli and Payng2003iLarour et al,|l2005/Khazendar et &)l2007|Sergienko et &J.
2008;Joughin et al.[2009). Similar methods have been applied to “higher-drdpproximations

(Pattyn et al,i2008), or to the Stokes equations themselves darlighem et al,[2010|Goldberg and Sergienko

2011 ;Petra et al,|2012]Perego et all2014lsaac et al,|2015).

More recently, algorithmic differentiation (AD) tools habeen applied to ice sheet models for
adjoint model generation. AD tools differentiate modelsifferentiating elemental operations and
applying the chain rule. They have been applied extensteedgmospheric and ocean codEsrica,
1997;Heimbach et a|.2002;Heimbach2008). The use of AD offers ease of differentiation of the
model. For instance, the majority of the adjoint models rogretd in the previous paragraph ignore
the dependence of nonlinear ice viscosity on strain rateslyzing an “approximate” set of adjoint
equations which have the same form as the forward modelyialipfor code reuse. At the same time,
this “approximate” adjoint ignores terms in the model geadiwithout knowing whether they are
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negligible. While the “full” adjoint model involves equatie distinct from the forward model, the use
of AD avoids having to write the code to solve them. Anotheraadage is modularity. Modifying,
for example, the specific form of strain-rate dependenceiswfosity in an ice sheet model would
then require invasive changes to an analytically-derivetch§ adjoint equations. When generating
the adjoint through AD, these changes are automatic. Funitre, AD tools are invaluable when
dealing with time-dependent or multiphysics models, wimeoelel complexity makes it very difficult
to generate adjoint code “by hand”. In fact, to date the oinhgtdependent ice sheet adjoint models
have been generated through the use of ABihbach and Bugniqi2009;McGovern et all2013;
Goldberg and Heimbag2013;Larour et al, 2014).

For clarity we will draw a distinction between the partiaffeliential equations (PDEs) that com-
prise a mathematical model of a physical system, and the gtatipnal model that discretizes these
equations. The PDEs represent an operator, the linearzatiwhich has an adjoint (trmntinuous
adjoint), which can be discretiz&sloldberg and Sergienk@011). Alternatively, the computational
model can be differentiated directly. We focus on ftthiscreteadjoint in this paper. As mentioned
above, a discrete adjoint model can be thought of as thesewder computation of the original
modelGriewank and Walthe(2008);Heimbach and Bugnio(2009), but an important subtlety is
that this discrete adjoint may not necessarily corresporide correct continuous adjoint, a subtlety
which bears on the accuracy of ice sheet adjoint models.

Most ice flow models solve a nonlinear elliptic system of jgdifferential equations (PDESs) for
ice velocity, and these equations require an iterative fp@idt approach. (Here “most ice flow mod-
els” is taken to meaall ice flow models, except those which make the Shallow Ice Axipration
(SIA,Hutter (1983)). The SIA strictly applies only to slow-moving ice@fen at its base, and not the
fast-flowing ice streams at the Antarctic and Greenland mampich currently exhibit variability.)
We refer to this fixed-point iteration as the Forward FixethPhkieration FFP1). Ice sheet models of
this type, to which AD tools have been applied previousim@y step backward through the FFPI
(Goldberg and HeimbaghR013;ILarour et al, [2014;Martin and Monnief 2014). This strategy is
sometimes referred to as threechanical adjoin{Griewank and Walthe2008). The mechanical ad-
joint of a fixed-point solution is in fact the iterative sahr of a distinct fixed-point problem, whose
convergence differs from that of the forward lo@hfistianson1994), and to which we refer as the
Adjoint Fixed Point IterationAFPI). As such the mechanical adjoint could potentially perféom
many iterations, thereby wasting resources; or too featitens, resulting in decreased accuracy. In
fact, in some cases the mechanical adjoint can be inacawgaedless, as we show in Sectionl4.1.
Additionally, the mechanical adjoint can lead to burdensonemory and/or recomputation loads as
discussed in Sectidd Blartin and Monnier(2014) show accuracy can be maintained by truncating
the iteration in the mechanical adjoint, but do not provid®laust, situation-independent way of
doing so.
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Christianson(1994) provides a mathematical strategy for finding theiatljf a fixed-point prob-
lem via direct solution of a related fixed-point problem. Toavergence of this related problem can
be directly evaluated, avoiding the problem of too many cv few iterations. A novelty of the
approach is that only information from the converged stétin® forward loop is used for the ad-
joint computation, permitting additional efficiency gains this paper we present an application
of the AD software OpenADUtke et al,2008) to the MITgcm time-dependent glacial flow model
(Goldberg and Heimbag2013). A different AD tool has previously been applied tis fhe model,
so here we focus on the implementation of the Christiansgorighm (henceforth calleBC94) —

an innovation which is observed to yield substantial improents in performance.

2 Fixed-point problem

The forward model to which AD methods are applied is thaGotdberg(2011), which is a “hy-
brid” of two low-order approximations to the nonlinear Séslflow equations that govern ice creep
over timescales longer than a dagréve and Blattern2009). These are the Shallow Ice Approxi-
mation, appropriate for slow-flowing ice governed by vetishear deformation, and the Shallow
Shelf Approximation (SSAMorland (1987);IMacAyeal(1989)), appropriate for fast-flowing ice
governed by horizontal stretching and shear deformatibe.Aybrid equations have been shown ap-
propriate in both regimes, and represent considerable gtatipnal savings over the Blatter-Pattyn
equations|Blatter, [1995;Pattyn I2003;Greve and Blattern2009), as they require the solution of a
two-dimensional system of elliptic PDEs rather than a tidimeensional one.

We do not discuss the details of the model here, as they aea givdetail inGoldberg(2011)
and iniGoldberg and Heimbac(2013). Rather, we focus on its FFPI. Conceptually, the rhale
gorithm can be divided into two components: prognostic €tidependent) and diagnostic (time-
independent). In the MITgcm land ice model, the prognosiimpgonent comprises an update to ice
vertical thickness i) through a depth-integrated continuity equation, as welaa update of the
surface elevation and, implicitly, the portion of the modemain where ice is floating in the ocean
rather than in contact with its bed. The diagnostic compbseives the FFPI for ice velocities
based on the current thickness profile. Mathematicallygtép can be understood as the inversion
of a nonlinear operataf’

F(u,a)=f. 1)

Herew is a vector representing horizontal depth-averaged u&gei andv. F' is the discretiza-
tion of a nonlinear elliptic PDE in depth-averaged velacityrepresents the set of material pa-
rameters that determine the coefficients of the PDE: icektigiss ), basal friction rheologi-
cal parameters({), and ice rheological parameterd)( f is the discretization of driving stress
(Cuffey and Patersqr2010), or the depth-integrated hydrostatic pressureigmagdwhich is deter-

mined by ice thickness). In this model (and in many otherms)ibnlinear elliptic equation is solved
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by a sequence of solutions of linear elliptic operators, ntibe operators depend on the result of

the previous linear solve:

U(m+1) = (L{u(m)7a})71f = q)(u(m)aa’)v (2)

where, in the definition of, a represents the augmentation of thesétd include f. L is a linear
operator constructed using,,,), the current iterate ofi, and the parametei. Note thata will
differ for each time step through the dependence on icerless, which is updated by the prognostic
component of the model. In general, the ice rheologicalmpatars depend on ice temperature, which
is advected and diffused over time. Our ice model does na hahermomechanical component,
but once developed, it will not affect the algorithm we prese this paper.

Eq. (2) is our FFPI mentioned previously. In practice thesitien is truncated when subsequent
iterates agree in some predefined sense, but in theory wilrge to a unique solutiam, (a). In the
process of computing the adjoint to the ice mod'?g; must be found, either directly or indirectly.

The focus of this paper is an efficient, scalable method ofpzding this object.

3 Forward model and “mechanical adjoint”

Here we give a brief overview of how the model and its mechadradjoint are constructed. For
further details the reader should congBibldberg and HeimbackR013). Tabld Il contains a high-
level pseudocode version of the ice model time steppingguiae. Superscripts denote time step
indices. First the velocity solve&eALC DRI VI NG_STRESS and the following loop) finds ice veloc-
ities based on current ice thickness and material parasméiten the prognostic component updates
thickness ADVECT _THI CKNESS). The function® comprises the construction of the linear sys-
tem L (including the nonlinear dependence of the matrix coeffiii®n the previous iterate) and its
solution.

Table[2 gives an overview of our implementation of the meataradjoint. Here we introduce
some notation: for a given computational variaBle the adjoint to X, which formally belongs to
the dual tangent space at, is denoted* X (e.g.Heimbach and Bugniqi2009). The algorithm
evolves the adjoint variables (e.g*H) backward in time. These adjoint variables carry with them
the sensitivities of the model output to the correspondorgrérd variables, and the sensitivities are
eventually propagated back to the input parameters. Natehh adjoints of the individual (pseudo-)
subroutines are given and correspond to the (pseudo-) wires of the forward model, mirroring
the way the adjoint is actually constructed. Just like thevéowd model, the adjoint contains an inner
loop — this is a specific implementation of the AFPI, whichlwé discussed in further detail below.
As the computation ofb involves the solution of a linear system of equations, thieiatdof ®
involves the solution of the adjoint of that system. Sineenhatrix L{w,,),a} is self-adjoint, it is

easier to calculate this result analytically than for an ADIto differentiate the linear solver code
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— allowing invocation of external “black box” libraries theannot be differentiated by the tool. This
strategy is used by other applications of AD to ice models. (®lartin and Monnieri2014).

An important point to be made is that the inner loop in Tdbles 2xXecuted as many times as
the corresponding inner loop in the forward models¢:n[™), without any checks of convergence.
This could lead to under- or over- convergence, as statedousy. Another important aspect is
that at each reverse time step, and, importantly, at eacttida of the FFPI, the state of the forward
model is required. In particular, every matiiXw,,,,a} must be stored (or recomputed), along with
other intermediate variables within the fixed-point loopeTstorage and recovery steps are shown
explicitly in tabled1 an{]l2 — and can lead to burdensome mginads depending on the number
of fixed-point iterations taken at each time step.

The mechanical adjoint of our model was first generated uskig (Transformation of Algo-
rithms in Fortran|Giering et al. (2005)), but has subsequently been generated via OpenAD wit
little further difficulty.

4 Fixed point treatment

Christianson(1994) presents an algorithm (BC94) for calculating theidjof a fixed-point prob-
lem that addresses the shortcomings given above, nametleffendence of the termination of the
adjoint loop on that of the forward loop, and the requirentergtore variables at each iteration of
the adjoint loop. Additionally it provides the opportunityr further optimization when applied to a
higher-order ice sheet model, as discussed below.

4.1 Mathematical basis

For a rigorous mathematical analysis of BC94 the user iscagkeonsult the original paper. Here
we give a brief overview of its mathematical basis. In terfE@. (2), consider the converged state

of the fixed point problem:
U, = P(uy,a). (3)

Consider a total differential of this equation:

0P . ) AN a
du, = %(u*,a)csu* + %(u*,a)éa. (4)
Rearranging gives
09 oo

If the Euclidean operator norm of the square maftik/ow is less than unity then the above is
equivalent to

0P
9 da. (6)

Su, = (I+6<I>/6u+ (0B /o) + (0D ou)® + )

6



Note that in the above serie3®/du is always evaluated at the converged solution The above
condition on the norm o0f® /0w will not hold in general — but since this is one of the condiso
required for convergence to a fixed point, we can expect thtlibe satisfied atu..
From eq.[(b) we obtain the desiradjoint operator, approximated by a truncated series of length
200 n:

ra (50 e () ((22)) +or ((2)) o o

The algorithm olChristianson(1994) uses a fixed-point loop in order to calculale (7), thever-

gence criterion of which determines the truncation lengtihis loop represents an implementation
of the AFPI, distinct from the one implemented by the mecbanadjoint. In order to make this
205 distinction explicit, the operator in ed.](7) can be written

2() (%) ®

where it is understood that in the= 0 term the product sequence evaluates to the identity. It is

straightforward to check that the mechanical adjoint (¢fl@&) effectively computes the operator

n 8(1)(7171) T n 8@(;@ T
Z(aa) H(@u)’ ®)

1=0 k=n+1—1

210 whered®;/0u and similar terms indicate that the gradient is calculaidgithe variables that
have been stored at forward iteratibprather than at the converged solution. It is apparent Hist t
expression can differ from ed.l(7) if some iterates are famfthe fixed point, or if the gradient df
is sensitive tau. In fact, it has been observed in certain cases that a podeechbinitial iterate can
lead to inaccurate adjoint calculation. Furthermore, artiechanical adjoint, the truncation length

215 depends on the number of forward iterations, which may noelsted to the convergence of this
series. A scheme which truncates this series based on #hefsibe truncated terms will be more
robust.

4.2 Implementation in OpenAD

Tabled 8 andl4 give an overview of our implementation of BG94he MITgcm ice model using
220 OpenAD. High-level changes to the code were necessaryhbugubroutines that comprise the ac-
tion of the operato® were left unchanged. As shownl[ih 3, rather than calfindirectly, the loop
implementing the FFPI calls a subroutine calid STAGE with an argumenphase which has
valuesPRELOOP, | NLOOP, or POSTLOOP. Just before the fixed-point lodgHl STAGE is called
with PRELOOP, which does nothing (that is, nothing in forward mode). Witthe loop,PHI STACGE
225 is called with argumeritNLOOP, which essentially has the same effect as the callitothe original
ice model time stepping algorithm. After the loop is conestdPHI STAGE is called with argument
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POSTLOOP, which calls® one more time (which, if the iteration is converged, showdgennegli-
gible effect). Of key importance is that any storing of vhtis that takes place within the calldo
in thel NLOOP phase isundoneat the end of each iteration, unless convergence is reabhether
words, exactly one “iteration’s worth” of storage occursidg the time step.

The reason for the addition of this layBHI STAGE is rooted in the nature of OpenAD source
transformation. To implement BC94 using this tool, it wasrfd to be simplest to replace OpenAD-
transformed code with handwritten code, which can be dotigeadubroutine level usingmplates
files. Such a template was written fBHI STACGE in order to implement the pseudocode in tables
[@ and[4. The subroutine thus serves as a “layer” which doesffatt the diagnostic ice physics
represented by the functiahor the prognostic physics implemented outside of the FF&.I0 hus
the modularity offered by the AD approach is not lost.

Table[4 shows how the adjoint model is constructed, makimgafisthe OpenAD-generated ad-
joint code for®. In adjoint mode, the calls tBHI STAGE happen in reverse order. The variable
w is a placeholder with no real role in the forward computatibat the adjoint of the call to
PHI STAGE in the POSTLOOP phase assigns & w the adjoint values of velocity resulting from
AD_ADVECT_THI CKNESS. In the INLOOP phasé*w is updated according to the equation:

T
S W(mg1) = "W () (gi) +0*u (20)
wherem indicates the AFPI iteration step. (In the table, the supsordices are left off for clarity.)
This loop iteratively constructs the truncated infiniteiegiin eq¥ (or rather, its action a@riu.).
Finally, the adjoint-mode call tBHI STAGE with PRELOCP represents the operation ()g%)T on
the result.

The introduction of the variable represents the bulk of the modifications that were necessary
implement the algorithm using OpenAD. The only additionaldification is a handwritten evalua-
tion of convergence af*w: we terminate when the relative reduction in tuggnorm of the change
in *w is below a fixed tolerance. We emphasize that all of these finations are at the level of
the “wrapper’PHI STAGE, which does not contain any representation of model phyaitd hence
changes to model physics would not impact this subroutimét®dandwritten adjoint code).

4.3 Optimization of linear solve

As mentioned previously, evaluatidginvolves the solution of a large (self-adjoint) linear grat
and thus the adjoint ob involves the solution of a linear system with the same maadsuming
the same values af anda). In the mechanical adjoint model, within a given time stéjs matrix
differs with each iteration of the adjoint loop; however,B&94, only the right hand side differs.
This invariance suggests the use of a linear solver whosecaosbe amortized over a number of
solves, such as an L-U decomposition or an algebraic midtigreconditioner, the internal data

structures of which only need be constructed once. In thidystve consider only an L-U solver.
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5 Test Experiment

A simple experimental setup was developed to test the acgupgrformance, and convergence
properties of the implementation of BC94. The setup cosisisan advancing ice stream and shelf in
a rectangular domaifx, y) € [0,80km] x [0,40km]. We prescribe an idealized bedrock topography
R and initial thicknessiy. R does not vary in the along-flow: () direction and forms a channel
through which the ice flows, prescribed by

R(z,) = —600 — 300 x sin (4gfm) : (11)

while initial thickness is given by

300 m -+ min (1, (£53%52)”) x 1000m 0 <z <50 km

300 m 50 km < z < 70 km.
Wherez > 70 km, there is open ocean (until the ice shelf front advancesth& point). Where ice

is grounded, a linear sliding governs basal stress:
7y = —Cu 13)

whereC = 25 Pa (a'm). The Glen’s Law coefficient (which controls the ice stiffs) is given by
8.5x 1078 Pa3 a~!, corresponding to ice with a uniform temperature.e84°C. At the upstream
boundary, ice flows into the domainat= 0 at a constant volume flux per meter width of k3.0°
m?/a. Aty = 0 andy = 40 km no-flow conditions are applied. Velocity, thickness grounding line
are plotted in Fid. 1(). Further details of the equatioesgren inGoldberg and Heimbac{2013).

In the experiment, a cost functiohis defined by running the model forward in time for 8 years,
and evaluating the summed square velocity at the end of theThat is,

J = u(i,j)* +v(i,j)? (14)
,J

wherei andj indicate cell indices in the— andy—directions, respectively, andandv are cell-
centered surface velocities. Unless specified otherwise sitep is 0.2 years and grid resolution is
2000 m, so K i <40 and 1< j < 20. The control variable consists of basal melt ratedefined for
each cell and considered constant over a cell and in timerfandero only where ice is floating),
and set uniformly to zero in the forward run, even under ftapice. Fig[1(H) plots the adjoint
sensitivities ofm, or alternativelyd.J/om,;, wherem,; is melt rate in cell(z, j). The field shows
broad-scale patterns that are physically sensible: in thegims of the ice shelf toward its front,
thinning through basal melting will weaken the restrictigece on the shelf arising from tangential
stresses at the no-slip boundaries. The driving force far Boproportional to ice shelf thickness,
and so in the center of the shelf thinning leads to decetaraMeanwhile, ice shelf velocities are

very insensitive to melting at the center of the ice shelfifro
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We find that the results of the mechanical adjoint and of theiaidmodel implementing BC94
(which we henceforth refer to as the “fixed-point adjointf¢ almost identical, with a relative dif-
ference no larger than 16 over the domain (not shown). However, the adjoint sensgivishould
also be compared against a “direct” computation of the gradi.e. one which does not involve the
adjoint model. In this cas@.J/0m,; is approximated through finite differencing, by perturbing
by a finite amount and running the forward model again. Thisutation is carried out for each cell
(¢,7). Fig.[I(c) plotsdisctq, given by

*,0 [P * 0, Cd
d*m;; — 6" mis

diSCfd = 5*mfjd =, (15)
whereé*mgjf is a centered-difference approximation:

*, __cd 1
o"miy = i('](mij +€) — J(mi; —e)), (16)

andJ(m;; + €) indicates that the meltrat cell (4, 7) only is perturbed by. ¢ is set to 0.01 m/a
uniformly.

discgq is seen to become quite large, on the order %6 in some parts of the domain, warranting
further examination. An implicit assumption in the disaapy measureéiscey is that the finite
difference approximation has negligible error, which may Ine the case. We can estimate where
this finite-difference error will be large: from a Taylor s expansion, and ignoring round-off error
(which we do not attempt to estimate), the error in approkimgethe adjoint sensitivity ofn;; by
finite difference is roughly proportional to the second ative 92.J/9(m;;)?. As a proxy for this
quantity we plot in Figl_1(d) the 2nd-order differencejof

A% Ty = J(mij+€)+ J(mi; —e) —2J 17)

Aside from the left-hand boundary, this measure appearstielate well withdisceg. Thus we
can at least partly attribute the pattern of discrepancyign[EHc] to errors in the finite difference
approximation. We emphasize thatl(17) is not an accuratsueaf the second derivative — which
is obviously not achievable through finite differencing isftorder derivatives are inaccurate — but
is simply meant to give an indication of its magnitude.

5.1 Truncation errors

The analysis ofhristianson(1994) suggests the error of the calculated adjoint depkmeksly on
both thereverse truncation erroand theforward truncation error The reverse truncation error is the
difference between the final and penultimate iterates imdtjeint loop, i.e. the error associated with
terminating the loop after a finite number of iterations. flisareferring to Tabl€&l4, ifn iterations

are carried out, the reverse truncation error is equal to

a||wm7wm—l||7 (18)

10
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whereq is related to the gradient @ at the fixed point. The norm here is thep-norm, because
this is the norm on which our convergence criterion is based.

While a tight bound fory will vary with each time step, it can be expected that therevé&runca-
tion error will vary linearly with the convergence toleraend we do not address it further. However,
we investigate the dependence on forward truncation esréwlbbws. A sequence of adjoint model
runs is carried out with increasingly smaller tolerancegtie forward fixed-point iteration loop. The
tolerance of the reverse loop is kept at a small value §L0The adjoint sensitivities corresponding
to the smallest forward tolerance)(~?) are assumed to be “truth”; error is estimated by comparison
with these values. Fi@ll 2 plots the maximum error in the adjoalculation over the domain against
the forward tolerance, which is a good measure of the fortvartcation error. Within a range of for-
ward truncation error the dependence is nearly linearpagih this dependence appears to become

weaker as forward truncation error becomes smaller.
5.2 Performance

Here we evaluate the relative performance of the mechaanchfixed-point adjoint models in terms
of both timing and memory use. The results are presented bfe& but we must first briefly
discuss how the OpenAD-generated adjoint computes setiedifor a time-dependent model. As
mentioned in the introduction, adjoint computation takke in reverse. This presents an issue,
because at each time step in this reverse computational, iiedadjoint model requires knowledge
of the full model state at the corresponding forward modektistep. In general, keeping the en-
tire trajectory (including intermediate variables) of méi-dependent model run in memory is not
tractable. Therefore efficient adjoint computation is aahaé between recomputation (beginning
from intermediate points in the run known as “checkpointstprage of checkpoint information on
disk, and keeping variables in memory (in data structuréedéapes”). The “store” and “restore”
commands in tabldd[1-4 refer to tape manipulation. For éurithformation on adjoint computation
seeGriewank and Walthe(2000) andGriewank and Walthe(2008).

In our implementation this amounts to an initial forward ruith no taping (aside from the final
time step), but writing of checkpoints to disk. This initiain is referred to below as the “forward
sweep”. Afterwards the “reverse sweep” begins, beginniith the final time step. The reverse
sweep consists of an intial adjoint computation for the ftimabstep. As reverse computation pro-
ceeds, the model is restarted from checkpoints to recoviblas used in adjoint computation. The
details of this process are important because they deterhmow many extra forward time steps
(without taping) must be taken. These plain time steps sét@pomputation of a subsequent time
step in “tape mode”, i.e. they write intermediate varialite$ape during computation. This is fol-
lowed immediately by a time step computation in “adjoint odn the model runs we consider,
no extra plain checkpoints are required. A run of 40 timestépen, will consist of nearly 40 time
steps in “plain mode” (no taping, but with checkpoint wrif)n40 time steps in tape mode, and 40

11
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time steps in adjoint mode. Even if adjoint time steps andingito disk and to tape are negligible,
such a run will still take about twice as long as the forwarddeio

In Table[® we compare run times for the forward and reverseeps/éor the mechanical and
fixed-point adjoints of our test problem, at multiple gridotutions. We also give run times for the
“untouched” model, i.e. code which has not been transforbye@penAD. The difference between
this time and the forward sweep represents writing checkpad disk, taping in the final time step,
and any other extra steps or changes (e.g. modified varigids) caused by the transformation.

We also show the maximum length of the double tape in memdrgrd are different tapes for
different variable types: integer, double, logical andreleter. The double tape is observed to require
the most memory in our tests. However, due to storage of lodigés, the integer tape is nonnegligi-
ble, requiring between 20% (in the largest test) to 50% (@nstimallest test) of the memory required
by the double tape. The numbers reported represent an uppedbas our system of reporting tape
lengths has a granularity of ¥§1024f elements.

In all cases, the forward and adjoint fixed-point toleramzegholds are set to 18. As resolution
increases, stability considerations require smaller tte@s, so the number of time steps doubles
when cell dimensions are halved. The simulations are rumtgh Xeon 2.67GHz cpus and the num-
ber of cores used is displayed. Unless otherwise specifiedConjugate Gradient solver from the
PETSc library (http://www.mcs.anl.gov/petsc) with IL-Wegonditioner is used to invert all matri-
ces.

The results show that without further optimization, the B@®gorithm does not offer large timing
performance gain over the mechanical adjoint. The forwewekp is slightly shorter, but the reverse
sweep is roughly the same. However, the memory load is far @ty going up to (at most) 136
MB in the high resolution run where the mechanical adjoimtsu®.76 GB. This provides a possible
explanation for the forward sweep of the mechanical adjo@img slower: it is overhead associated
with the additional memory allocation. As even at the highresolution this is still a modestly-
sized problem, it is likely that certain setups of the modetertain machines would quickly reach
memory limits and either crash or beginning swapping mensgyificantly affecting performance.

Substantial timing performance gains are not seen untiLthieoptimization described in Sec-
tion[4.3. As discussed, this optimization is made possillehle BC94 algorithm. At the highest
resolution tested, the reverse sweep takes 40% less tidayvanall the model run is 30% shorter.
The performance gain is due to the fact that in a time stepditeet L-U decomposition is only
done once, and subsequent linear solves are by forward- asidsubstitution, which are far less
expensive operations. As indirect solvers such as Corgugeddients are typically faster than direct
matrix solvers, it is unclear what relative performancengabuld be at even higher resolutions; but
in the three resolutions tested, relative performance ovgs with resolution.

We mention that the BC94 algorithm has recently been imphtetkin the AD tool Tapenade,
through a different user interface that relies on direstiireserted in the code rather than on the
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OpenAD templating mechanism. It has not been tested on dfoigenodel but on two other CFD
codes, without our linear solver optimisation part. Thairfprmance results are in line with ours,
with a minor run-time benefit but a major reduction of memaspsumptionTaftaf et al,[2015).

6 Realistic Experiment

In addition to idealized experiments, the fixed-point adfjdias been tested in a more realistic
setting. Smith Glacier in West Antarctica is a fast-flowicg stream that terminates in a floating
ice shelf. In recent years, high thinning rates of Smith Haeen observedShepherd et &l.l2002;
McMillan et all, [2014), and this is thought to be related to, or even causgthioying of the ad-
jacent ice shelves by submarine meltil@hépherd et al2004). Here we examine this mechanism
using the fixed-point adjoint. To initialize the time-degdent model, we choose a domain and a rep-
resentation of the bedrock elevation and ice thicknesseimebion from BEDMAP2[retwell et al,
2013) and constrain the hidden parameters of the modellas@anal coefficient field and depth-
averaged ice temperature) according to observed velositbgunethods that have become standard
in glaciological data assimilation (e.@oughin et al.l2009;Favier et al,[2014). The observed ve-
locities come from a dataset of satellite-derived velooitgr all of AntarcticalRignot et al,|l2011).
Using the bed and thickness data, and the inferred slidingtemperature fields, the model is
stepped forward for 5 years with 0.2 year time steps. Thelsition is run on 24 cpus. As with our
test experiment, submarine melt rate is used as the corgriable. The cost function, rather than
being a measure of velocity, is the lossvlume Above FloatatioVAF) in the domain at the end
of the 5 years. VAF is essentially the volume of ice that carddtribute to sea level change, and is
often used to assess the effects of ice shelf thinning onngiediiceDupont and Alley(2005). It is

given by
VAF = “HAF(i)AzAy, (19)
l +
HAF(i) = (h(i) + p;”R(i)) : (20)

wherei is cell index,h is thicknessp and andb,,, are respectively ice and ocean denditys bedrock
elevation, and the “+” superscript indicates the positiaet pf the number. We use= 918 kg/m?
andp,, = 1028 kg/m®. A key aspect is that any floating ice does not contribute t&.VA

The results are shown for the ice shelves connecting to S@lilier in Fig.[8, overlain on
grounded ice velocities (adjoint melt rate sensitivities 2ero where ice is grounded). It is inter-
esting to note where the sensitivities are largest, aloagrtargins of the ice shelves and also along
the boundary between the two main sections of the ice shie#.riiechanism is similar to that of
our test experiment: the margins are where shear stresstiedxand thinning here will lessen the
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backforce on grounded ice. The boundary between the twassabf the ice shelf likely plays a
similar role in the ice shelf force balance, as velocity she&arge in this area (not shown).

Regarding accuracy, the finite-difference approximat@tihé gradient cannot be found for every
ice shelf cell. However, we compared the adjoint sensjtiitthe finite difference approximation at
4 arbitrary locations, and relative discrepancy was on tideroof 107°. In terms of performance,
this is a much larger setting than even the highest resoli@mined in the test problem. The
500 m cell size leads to approximately 200,000 ice-coveatid i the domain (which means the
matrices involved, which incorporate both- andy— velocities, have 400,000 rows and columns).
The forward sweep has a run time of 1700 seconds and the eesweep 2340 seconds. (Multiple
runs on the same cluster give similar timing results.) Oh&/ftxed-point adjoint with an L-U solver
for the adjoint loop is considered. The timing results areogimaging, indicating that the reverse
sweep timing comes closer the forward sweep timing withdesgale simulations.

7 Discussion and conclusions

The fixed-point algorithm aChristianson(1994) has been successfully applied to the adjoint cal-
culation of a land ice model. The algorithm is very relevanthte model code, as the bulk of the
model’s computational cost is the solution of a nonlinelptit equation through fixed-point iter-
ation. As many land ice models solve a similar fixed-pointbfeon — particularly those intended
to simulate fast-flowing outlet glaciers in Antarctica anteénland — the methodology introduced
here has potential for the application of algorithmic diffietiation techniques to other ice models.
The implementation of the algorithm replaces a small portb AD-generated code by handwrit-
ten code. However, this is done such that it does not interfgth the modularity offered by AD
approach, and it does not require revision as model phybmsge.

The algorithm offers two advantages over the more straigivtird “mechanical adjoint,” i.e. the
application of AD without intervention. First, the codeses the true adjoint to the fixed point it-
eration, rather than an approximatianf(Eq.[9). This avoids inaccurate results arising from “bad”
initial guesses, and ensures proper convergence of thegioiad adjoint. Second, the memory re-
quirements do not increase with the number of adjoint il@natas they do with the mechanical
adjoint. In the case of OpenAD, the effect on timing perfong®is small; but for machines with
limited memory or for larger problems, the large memory laadociated with the mechanical ad-
joint will be a serious issue.

In the context of our ice model, the nature of the algorithfoved for further optimization, as
it replaces the sequential solve of linear systems wittediffy matrices to a sequence of solves
with the same matrix. Replacing the Conjugate Gradientesad¥ the forward model with a direct
L-U solver in the adjoint model leads to further performaimprovement. The ratio of the reverse

sweep to forward sweep, which is roughly the ratio of the mmes of adjoint and forward models,
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decreases from 2.6 for the smallest problem considereditiodthe largest. In the case where only
a single time step is taken (not discussed above), no chetkmre necessary, and the duration of
the reverse sweep can be as little as 0.3 times the forwargpswe

It should be pointed out that some authors have implementethodel adjoint generation with-
out any iteration within the adjoint model. Depending on #pproximation to the Stokes mo-
mentum balance used, the adjoint stress balance can bedletlirectly from the equations in-
volved [Perego et al.l2014;lsaac et al,[2015). The result is a linear elliptic equation that can be
solved without iteration, but which leads to a linear systeat is far less sparse than in the for-
ward model. Additionally, the equations must potentially te-derived if the model physics are
changed. Moreover, not all such approximations to the Stbléance allow such an approach. “Hy-
brid” stress balances, which solve two-dimensional apprakons to the Stokes balance and are
appropriate for both fast-sliding and slow creeping flove arcreasing in popularity due to low
computational cost but reasonable agreement with the Birdér approximation [e.gGoldberg
(2011);Schoof and Hindmars{2010);/Cornford et al.(2013); Arthern et al.(2015); W. Lipscomb,
pers. comrh Our ice model implements such a hybrid stress balancdem@iftiating such a bal-
ance at the equation level is possible but very tedious, @adsl to very complicated expressions
that depend strongly on discretizatid®dldberg and Sergienk@011), both undesirable properties.
Thus we argue that our application of the Christianson fixeitht algorithm in our algorithmically
differentiated ice model framework represents a contigouid land ice modeling in general.
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Table 1. Pseudocode version of forward model time-stepping procedure.

FOR n = initial TimeStep TO final Ti neStep
I/ Constructsa from H™

CALL CALC DRI VI NG _STRESS( H™)

m = 0

REPEAT UNTI L CONVERGENCE OF u
u = ®(u,a)
m = m+l

store L, u and other vari abl es
lastmi™ = m
// Finds H™+1I from continuity equation with:
CALL ADVECT THI CKNESS()

Table 2. Pseudocode version of mechanical adjoint.

FOR n = final TineStep DOWNTO i niti al Ti neStep
/ Constructss* H™ and §*w!™! from §* H "+
/ via the adjoint of the continuity equation :
CALL AD_ADVECT_THI CKNESS()

REPEAT lastmi™ TI MES
restore L, w and other variabl es

§a = 6a+su(92)”
§u = 5*u(22)”

I/ Updatess* H™ from6*a :
CALL AD CALC DRI VI NG _STRESS( §* HI™)

19



Table 3. Pseudocode version of modified forward model for BC94.

20

FOR n = initial TimeStep TO final Ti neStep

// Constructsa from H" :

CALL CALC DRI VI NG STRESS( H™)

uw = initial guess

CALL PHI STAGE( PRELOOP, w, wu, a)

REPEAT UNTI L CONVERGENCE OF u
CALL PHI STAGE(I NLOOP, w, u, &)

CALL PHI STAGE(PCSTLOOP, w, wu, &)

// Finds H™+ from continuity equation withe:
CALL ADVECT THI CKNESS()

SUBROUTI NE PHI STAGE(phase, w, u, a)

| F ( phase==PRELOOP)

// do nothing

ELSE | F (phase==I NLOOP)

save tape pointer

u = D(u,a)

// Makes sure no storage is done :
restore tape pointer

ELSE | F (phase==POSTLOOP)

u = ®d(u,a)

store L, u and other variabl es



Table 4. Pseudocode version of fixed-point (BC94) adjoint.

FOR n = final TimeStep DOMTO initial Ti meStep

I/ Constructsy* H™ and §*w from §* H"+1]
[l via the adjoint of the continuity equation :
CALL AD_ADVECT_THI CKNESS()

CALL AD PHI STAGE( POSTLOOP, §*w, 6*u, 6%a)
REPEAT UNTI L CONVERGENCE OF §*w

CALL AD PHI STAGE(| NLOOP, &*w, 0*u, 6%a)
CALL AD PHI STAGE( PRELOOP, §*w, d&*u, &%a)
6*u = 0.0
I/ Updatess* H™ from6*a :
CALL AD CALC DRI VI NG STRESS( §*H™)

SUBROUTI NE AD_PHI STAGE(phase, &*w, 6*u, 6*a)

| F (phase==POSTLQOOP)
Sfw = u

ELSE | F (phase==I NLOOP)
save tape pointer
restore L, uw and other variables
w = §fw (%)T+6*u
/I Makes sure converged state is reused :
restore tape pointer

ELSE | F ( phase==PRELOOP)

§a = 6w (22)"
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Figure 1. (a) Surface speed (shading) in the test experiment. The flow directfoonisright to left, and the
white portion of the figure is where the ice shelf has not advanced to thefeheé domain. Black contours
give thickness spaced every 200 m and the white contour is the grouimtBngb) Adjoint sensitivities of ice
speed to basal melt rates. (c) (log) relative discrepancy betweeintshaositivities and the gradient calculated

via finite differencing. (d) 2nd order differencing of cost functidn
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Figure 2. Maximum error in fixed-point adjoint calculation versus tolerance ofvésd loop. The red line
indicates linear dependence.

Table 5. Timing performance and memory usage of mechanical and fixed-pdjaints. “dbl tape” indicates

the length of the double tape.

) BC94 algorithm
grid size plain mechanical adjoint | BC94 algorithm with L-U
(untouched) o
optimization
40x20 total ‘ 9.4s | total 38.9s total 37.2s | total 30.4s
forward | 12.2s forward | 11.7s | forward | 11.7s
(40 timesteps, reverse | 25.9s reverse | 25.1s reverse | 18.3s
1 cpu) dbl tape | 264MB | inttape | 8MB inttape | 8MB
80x40 total | 110s | total 434s | total 4255 | total 321s
forward | 134 s forward | 125s forward | 126 s
(80 timesteps, reverse | 300s reverse | 300s reverse | 195s
1 cpu) dbltape | 1.38GB | inttape | 136MB | inttape | 136MB
160x80 total | 882 | total 3276s | total 3204s | total 2306 s
forward | 971s forward | 886 s forward | 886 s
(160 timesteps, reverse | 2297s | reverse | 2304s | reverse | 1417s
4 cpus) dbltape | 2.76GB | inttape | 136MB | inttape | 136MB
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Figure 3. Adjoint sensitivity of loss of Volume above Floatation (VAF) to basal meltinger the ice shelves
adjacent to Smith Glacier (location shown in inset). Filled contours give faddee velocity where ice is
grounded; red-white shading gives adjoint melt rate sensitivity unéeshelves. The thick black contour de-
notes the boundary of the ice shelves.
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